ГОСТ ИСО 10112-2002
Группа Т34
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
МАТЕРИАЛЫ ДЕМПФИРУЮЩИЕ
Графическое представление комплексных модулей упругости
Damping materials. Graphical presentation of the complex modulus
МКС 17.160
ОКСТУ 0011
Дата введения 2007-11-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-97 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены"
Сведения о стандарте
1 ПОДГОТОВЛЕН Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" на основе собственного аутентичного перевода стандарта, указанного в пункте 4
2 ВНЕСЕН Госстандартом России
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 22 от 6 ноября 2002 г.)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97 | Код страны | Сокращенное наименование национального органа по стандартизации |
Азербайджан | AZ | Азгосстандарт |
Армения | AM | Армгосстандарт |
Беларусь | BY | Госстандарт Республики Беларусь |
Казахстан | KZ | Госстандарт Республики Казахстан |
Кыргызстан | KG | Кыргызстандарт |
Молдова | MD | Молдова-Стандарт |
Российская Федерация | RU | Госстандарт России |
Таджикистан | TJ | Таджикстандарт |
Туркменистан | TM | Главгосслужба "Туркменстандартлары" |
Украина | UA | Госстандарт Украины |
4 Настоящий стандарт идентичен международному стандарту ИСО 10112:1991 "Материалы демпфирующие. Графическое представление комплексных модулей упругости" (ISO 10112:1991 "Damping materials - Graphical presentation of the complex modulus").
Степень соответствия - идентичная (IDT).
Настоящий стандарт идентичен ГОСТ Р ИСО 10112-99
5 Приказом Федерального агентства по техническому регулированию и метрологии от 24 апреля 2007 г. N 84-ст межгосударственный стандарт ГОСТ ИСО 10112-2002 введен в действие в качестве национального стандарта Российской Федерации с 1 ноября 2007 г.
6 ВВЕДЕН ВПЕРВЫЕ
Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе "Национальные стандарты".
Информация об изменениях к настоящему стандарту публикуется в указателе "Национальные стандарты", а текст изменений - в информационных указателях "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе "Национальные стандарты"
Введение
Демпфирование - одно из средств ослабления вибрации в конструкции. Демпфирование представляет собой рассеяние вибрационной энергии и превращение ее в тепловую энергию в процессе распространения колебаний. Если технически значимое демпфирование имеет место внутри материала конструкции, такой материал называют вибродемпфирующим. Рассеяние в вибродемпфирующем материале обусловлено межмолекулярным взаимодействием или взаимодействием узлов кристаллической решетки и может быть охарактеризовано петлей гистерезиса механического напряжения (деформации) в материале. Другие возможные причины демпфирования, такие как пластические деформации, относительные проскальзывания или воздушные зазоры в соединениях, акустическое излучение колебательной энергии, рассеяние энергии вследствие токов Фуко, настоящим стандартом не охвачены.
Механические свойства большинства демпфирующих материалов зависят от частоты, температуры, а при больших деформациях и от амплитуды деформации. Поскольку настоящий стандарт распространяется только на линейные случаи, зависимость от амплитуды деформации в нем не рассматривается.
Основной задачей настоящего стандарта является улучшение взаимопонимания между специалистами различных отраслей техники, в которых используется понятие вибродемпфирующего материала.
1 Область применения
Настоящий стандарт устанавливает форму представления в графическом виде комплексного модуля упругости вязкоупругого вибродемпфирующего материала, обладающего свойствами однородности (на макроскопическом уровне), линейности и термореологической простоты (см. приложение А). Такими комплексными модулями упругости могут быть, например, модуль сдвига, модуль Юнга, модуль объемной упругости или постоянная Ламе. Графическое представление этих физических величин является общепринятым и в большинстве случаев позволяет получить достаточную информацию о свойствах вибродемпфирующих материалов.
В приложении А определены предпочтительные параметры и символы, используемые для представления комплексного модуля упругости.
2 Определения и обозначения
В настоящем стандарте используют следующие обозначения:
Пояснение терминов и обозначений, используемых в настоящем стандарте, дано в приложении А.
3 Контроль данных
В настоящем стандарте предполагается, что все экспериментальные данные, связанные с комплексным модулем упругости, получены в соответствии с хорошо зарекомендовавшими себя методами (см., например, [1]). Тем не менее, целесообразно осуществлять контроль достоверности данных. Для этого следует, по крайней мере, построить график зависимости
Рисунок 1 - Проверка качества данных
Каждая точка на этой кривой соответствует одному значению приведенной частоты [см. формулу (А.6)]. Однако сам график не предназначен для определения данной величины. Коэффициент потерь в материале и абсолютное значение комплексного модуля упругости связаны между собой параметрической зависимостью через приведенную частоту, которая (так же, как и частота, и температура) не присутствует на графике в явном виде. Ни в какой части разброс в данных на графике не может быть отнесен на счет функции температурного смещения.
График зависимости коэффициента потерь от комплексного модуля упругости, построенный в логарифмическом масштабе, помогает выявить ценную информацию о разбросе в экспериментальных данных. Этот разброс может быть охарактеризован шириной полосы, в которой лежат данные, а также выбросами отдельных точек относительно средней линии полосы. Насколько данный разброс допустим, зависит от конкретных приложений. По данному графику, однако, ничего нельзя узнать о точности измерений температуры и частоты, а также о наличии каких-либо систематических ошибок.
4 Функция температурного смещения
Данные о комплексном модуле упругости, если они получены во всем экспериментальном диапазоне температур и частот, определяют функцию температурного смещения
Рекомендуется, чтобы для всего экспериментального диапазона температур были построены графики трех величин, связанных с функцией температурного смещения, которые наиболее широко используются в практических приложениях (см. в качестве примера рисунок 2):
- самой функции температурного смещения
- ее углового коэффициента
- полной энергии активации
Последнюю величину определяют по формуле
где
Рисунок 2 - Функция температурного смещения
5 Представление данных
5.1 График приведенной частоты
Данные для комплексного модуля упругости представлены на рисунке 3. Вдоль вертикальной оси отложены в логарифмическом масштабе действительная
Приведенную частоту
где
5.1.1 Температурные линии Джоунса
Правая шкала в логарифмическом масштабе на рисунке 3 соответствует циклической частоте
совместно с горизонтальной осью приведенной частоты и вертикальной осью частоты, составляют номограмму "температура - частота - приведенная частота" [3].
Рисунок 3 - График комплексного модуля упругости для приведенной частоты
Выбирают значения температуры
В пределах диапазона частот эксперимента диагональные изотермы показаны сплошными линиями, а вне этого диапазона - пунктирными. Это определяет диапазон изменения приведенной частоты, который изменяется от линии низшей температуры и максимальной частоты в правой части шкалы до линии высшей температуры и минимальной частоты.
Пример
Используя данные, представленные на рисунке 3, введем значение частоты 200 Гц на правой вертикальной шкале и от точки, соответствующей 200 Гц, проведем горизонтальную линию до пересечения с диагональной прямой, соответствующей 295 К. Точка пересечения определяет значение приведенной частоты 600 Гц. Вертикаль на этой приведенной частоте пересекает кривые данных в точках, соответствующих значениям 115 МПа для действительной части, 53 МПа для мнимой части и значению коэффициента потерь, определяемому по левой вертикальной шкале, 0,53.
5.1.2 График "перевернутое U"
Те же данные для комплексного модуля упругости
Рисунок представляет собой номограмму, основанную на формуле (3) [4].
Рисунок 4 - График "перевернутое U" для комплексного модуля упругости
Пример
Введем на правой шкале значение 200 Гц и от точки, соответствующей 200 Гц, проведем горизонтальную линию до пересечения с кривой, соответствующей 295 К; от точки пересечения проследуем вниз и прочитаем на горизонтальной оси 120 МПа, после чего продолжим вертикаль вверх до пересечения с кривой данных. Проведя горизонталь от точки пересечения до левой вертикальной шкалы, получим значение коэффициента потерь 0,53.
5.2 Аналитическое представление данных
В ряде задач определенные удобства обеспечивает аппроксимация полученных данных для функции температурного смещения и комплексного модуля упругости некоторыми аналитическими кривыми. Поэтому, помимо графического, рекомендуется также аналитическое представление данных (например, в виде таблиц 1 и 2).
Таблица 1 - Пример аналитического представления функции температурного смещения
Таблица 2 - Пример аналитического представления комплексного модуля упругости
Если для определения значений параметров зависимостей или при интерпретации данных используют графические изображения (например, линеаризованной зависимости между действительной и мнимой частями модуля упругости для определения угла пересечения кривой данных с осью действительной части модуля), они также должны быть включены в представление данных.
При использовании аналитического представления данных следует избегать ненужной экстраполяции.
Приложение А
(справочное)
Соотношения для комплексного модуля упругости
Основное уравнение для деформируемого линейного, изотермического, изотропного, однородного, термореологически простого [см. формулу (А.7)] вязкоупругого материала в операторной форме имеет вид [5]:
где
Оператор
Дифференциал приведенного времени
где
Осуществив преобразование Фурье для обеих частей формулы (А.1), можно определить комплексный модуль сдвига
где знак * означает преобразование Фурье некоторой функции времени, например
Приведенная угловая частота
представляет собой произведение угловой частоты
Комплексный модуль сдвига зависит как от частоты, так и от температуры:
В том и только в том случае, когда эта зависимость имеет вид
материал называют термореологически простым. Формулы (А.1)-(А.7) справедливы только при выполнении предположения о линейности модели.
Рассмотрим теперь участок вязкоупругого материала под воздействием сдвиговой деформации, изменяющейся по синусоидальному закону [6]:
которая отстает по фазе от сдвигового напряжения на угол
В комплексном виде эти величины могут быть представлены как
Тогда комплексный модуль сдвига может быть представлен также в виде
где
Сказанное справедливо для одно-, двух- и трехосных деформаций и напряжений [2] и может быть распространено и на другие параметры, такие как модуль Юнга
К термореологически простым материалам относят те материалы, для которых комплексный модуль упругости может быть выражен в виде комплексной функции одной независимой переменной, а именно - приведенной частоты, которая отражает зависимость комплексного модуля упругости как от частоты, так и от температуры.
Примечание - Иногда действительную часть комплексного модуля упругости и коэффициент потерь в материале рассматривают как независимые функции приведенной частоты. Хотя это и может облегчить получение удовлетворительных практических результатов, с концептуальной точки зрения данное предположение ошибочно.
Оценка комплексного модуля упругости, полученная для заданной температуры и заданной частоты, определяет амплитудное и фазовое соотношение между синусоидальными напряжением и деформацией.
Приложение В
(справочное)
Библиография
[1] Standard method for measuring vibration-damping properties of materials, American Society for Testing and Materials, ASTM E 756-83, 1983
[2] Ferry, J.D.Viscoelastic properties of polymers, 3rd ed, Wiley, 1980
[3] Jones, D.I.G. A reduced temperature nomogram for characterization of damping material behavior, Shock and Vibration Bulletin, 1978, Vol. 48, No 2, pp. 13-22
[4] Jones, D.I.G. and Rao, D.K. A new method for representing damping material properties, ASME Vibration Conference, Boston, MA, Sept. 1987
[5] Rogers, L. Operators and fractional derivatives for viscoelastic constitutive equations, J.Rheology, 1983, Vol. 27, No 4, pp. 351-372
[6] Нашиф А., Джоунс Д., Хендерсон Дж. Демпфирование колебаний. - М.: Мир, 1988. - 448 с.
Электронный текст документа
и сверен по:
, 2007