agosty.ru13. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ, ЗАЩИТА ЧЕЛОВЕКА ОТ ВОЗДЕЙСТВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ. БЕЗОПАСНОСТЬ13.040. Качество воздуха

ГОСТ Р 56190-2014 Чистые помещения. Методы энергосбережения

Обозначение:
ГОСТ Р 56190-2014
Наименование:
Чистые помещения. Методы энергосбережения
Статус:
Действует
Дата введения:
12.01.2015
Дата отмены:
-
Заменен на:
-
Код ОКС:
13.040.01, 19.020

Текст ГОСТ Р 56190-2014 Чистые помещения. Методы энергосбережения

ГОСТ Р 56190-2014



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЧИСТЫЕ ПОМЕЩЕНИЯ

Методы энергосбережения

Cleanrooms. Energy efficiency

ОКС 13.040.01

19.020

Дата введения 2015-12-01

Предисловие

1 РАЗРАБОТАН Общероссийской общественной организацией "Ассоциация инженеров по контролю микрозагрязнений" (АСИНКОМ) при участии Открытого акционерного общества "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2014 г. N 1427-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Чистые помещения широко применяются в электронной, приборостроительной, фармацевтической, пищевой и других отраслях промышленности, в производстве медицинских изделий, в больницах и т.д. Они стали неотъемлемой частью многих современных процессов и средством защиты человека, материалов и продукции от загрязнений.

В то же время чистые помещения требуют значительных энергозатрат, в основном на вентиляцию и кондиционирование воздуха, которые могут превышать расход энергии в обычных помещениях в десятки раз. Это вызвано высокими кратностями воздухообмена и, как следствие, значительными потребностями в нагреве, охлаждении, увлажнении и осушении воздуха.

Сложившаяся практика создания чистых помещений ориентирована на обеспечение заданных классов чистоты без должного внимания к задачам экономии энергоресурсов.

Поддержание заданной чистоты в помещении является непростой и комплексной задачей. Необходимо точное знание характеристик выделения частиц и на их основе выполнение расчетов расхода воздуха и кратности воздухообмена, что не всегда возможно. Концентрация частиц в воздухе носит вероятностный характер и зависит от многих факторов: влияния человека, процесса, оборудования, материалов и продукции, которые трудно оценить точно, особенно на стадии проектирования. В силу этого проектные решения принимаются с большим запасом, чтобы при аттестации и эксплуатации гарантированно получить заданный класс чистоты.

Хорошо продуманное и построенное чистое помещение имеет запас по чистоте. Существующая практика аттестации и эксплуатации чистых помещений этот запас не учитывает, что приводит к излишнему расходу энергии.

Еще одна причина излишне высоких кратностей воздухообмена, закладываемых в проекты, состоит в применении нормативных требований, которые не распространяются на данный объект. Например, приложение 1 к ГОСТ Р 52249-2009 "Правила производства и контроля качества лекарственных средств" (GMP) устанавливает, что время восстановления чистого помещения при производстве стерильных лекарственных средств не должно превышать 15-20 мин. Для выполнения этого требования кратность воздухообмена может существенно превышать значения, необходимые для обеспечения класса чистоты в установившемся режиме.

Распространение требований к производству стерильных лекарственных средств на нестерильные препараты и другую продукцию, в том числе немедицинского назначения, приводит к существенному перерасходу энергии.

Рекомендации по экономии энергии в чистых помещениях приведены в стандартах Великобритании BS 8568:2013* [1] и Общества немецких инженеров VDI 2083, часть 4.2 [2].

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

В настоящем стандарте приведены требования к определению реального резерва мощности на этапах аттестации и эксплуатации, исходя из фактического расхода энергоресурсов при гарантии соответствия заданному классу чистоты. Экономия энергии должна предусматриваться не только на этапе проектирования чистых помещений, но и обеспечиваться при аттестации и эксплуатации.

________________

A. Fedotov. Saving energy in cleanrooms. Cleanroom Technology. London, August, 2014, pp.14-17; Федотов A.E. Экономия энергии в чистых помещениях // Технология чистоты. N 2/2014, стр. 5-12; Чистые помещения / Под ред. А.Е.Федотова. М.: АСИНКОМ, 2003, 576 с.

При аттестации и эксплуатации чистых помещений следует оценивать реальное выделение частиц и на основе этого определять необходимый расход воздуха и кратность воздухообмена, которые могут быть существенно ниже проектных значений.

В настоящем стандарте приведен гибкий подход к определению кратности воздухообмена с учетом реального выделения частиц и технологического процесса.

1 Область применения

Настоящий стандарт устанавливает методы энергосбережения в чистых помещениях.

Настоящий стандарт предназначен для применения при проектировании, аттестации и эксплуатации чистых помещений с целью экономии энергоресурсов. Настоящий стандарт учитывает специфику чистых помещений и может использоваться в различных отраслях (радиоэлектронной, приборостроительной, фармацевтической, медицинской, пищевой и др.).

Настоящий стандарт не затрагивает требования к вентиляции и кондиционированию, установленные нормативными и нормативно-правовыми документами по безопасности работы с патогенными микроорганизмами, токсичными, радиоактивными и другими опасными веществами.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 52249-2009 Правила производства и контроля качества лекарственных средств

ГОСТ Р 52539 Чистота воздуха в лечебных учреждениях. Общие требования

ГОСТ Р ИСО 14644-1 Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха

ГОСТ Р ИСО 14644-3 Чистые помещения и связанные с ними контролируемые среды. Часть 3. Методы испытаний

ГОСТ Р ИСО 14644-4 Чистые помещения и связанные с ними контролируемые среды. Часть 4. Проектирование, строительство и ввод в эксплуатацию

ГОСТ Р ИСО 14644-5 Чистые помещения и связанные с ними контролируемые среды. Часть 5. Эксплуатация

ГОСТ Р ЕН 13779 Вентиляция в нежилых зданиях. Технические требования к системам вентиляции и кондиционирования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте использованы термины и определения по ГОСТ Р ИСО 14644-1, а также следующие термины с соответствующими определениями:

3.1 время восстановления: Время снижения концентрации частиц в помещении в 100 раз по сравнению с начальной, достаточно большой концентрацией частиц.

Примечание - Методика определения времени восстановления приведена в ГОСТ Р ИСО 14644-3 (пункт В.12.3).

3.2 кратность воздухообмена N: Отношение расхода воздуха L/ч) к объему помещения V), N=L/V, ч.

3.3

неоднонаправленный поток воздуха: Распределение воздуха, при котором поступающий в чистую зону воздух смешивается с внутренним воздухом посредством подачи струи приточного воздуха.

[ГОСТ Р ИСО 14644-4-2002, статья 3.6]

3.4

однонаправленный поток воздуха: Контролируемый поток воздуха с постоянной скоростью и примерно параллельными линиями тока по всему поперечному сечению чистой зоны.

Примечание - Поток воздуха такого типа непосредственно уносит частицы из чистой зоны.

[ГОСТ Р ИСО 14644-4-2002, статья 3.11]

3.5 расход воздуха L: Количество воздуха, подаваемого в помещение в час, м/ч.

3.6

эффективность вентиляции : Эффективность вентиляции характеризует связь между концентрацией загрязнений в приточном воздухе, вытяжном воздухе и в зоне дыхания (внутри эксплуатируемой зоны).Эффективность вентиляции вычисляется по формуле

, (1)

где - концентрация загрязнений в вытяжном воздухе;

- концентрация загрязнений внутри помещения (в зоне дыхания в пределах эксплуатируемой зоны);

- концентрация загрязнений в приточном воздухе.

Эффективность вентиляции зависит от распределения воздуха, а также от вида и места нахождения источников загрязнения воздуха. Она может быть разной для различных видов загрязнений. Если происходит полное удаление загрязнений, то эффективность вентиляции равна единице. Более подробно понятие "эффективность вентиляции" рассмотрено в CR 1752.

Примечание - Для обозначения данного понятия также широко используется термин "эффективность удаления загрязнений".

[ГОСТ Р ЕН 13779-2007, статья 3.4]

4 Принципы экономии энергии в чистых помещениях

4.1 Меры по энергосбережению

Меры по энергосбережению могут быть общими для любых зданий, производств и систем вентиляции и кондиционирования или специальными для чистых помещений.

4.2 Общие меры

К общим мерам относятся:

- минимизация поступления и потерь тепла, утепление зданий;

- рекуперация тепла;

- рециркуляция воздуха с доведением доли наружного воздуха до минимума, где это не запрещено обязательными нормами;

- размещение энергоемких производств в климатических зонах, не требующих чрезмерно высоких затрат на обогрев и увлажнение воздуха зимой, охлаждение и осушение летом;

- использование высокоэффективных вентиляторов, кондиционеров и чиллеров;

- исключение неоправданно жестких диапазонов изменения температуры и влажности;

- поддержание влажности воздуха в зимний период на минимальном уровне;

- удаление избытков теплоты от оборудования преимущественно встроенными в оборудование локальными системами, а не средствами вентиляции и кондиционирования воздуха и т.д.

- использование средств защиты рабочих мест и вытяжных шкафов, не требующих удаления больших объемов воздуха при работе с вредными веществами (например, закрытое оборудование, системы с ограниченным доступом, изоляторы);

- использование оборудования с резервом мощности (например, кондиционеры, фильтры и др.), имея в виду, что оборудование с большей номинальной мощностью потребляет меньше энергии для выполнения данной задачи.

Примечание - При одинаковом расходе воздуха у вентилятора (кондиционера) с большей номинальной мощностью расход энергии будет меньше;

- другие меры согласно 4.4.2.

4.3 Специальные меры

Эти меры учитывают особенности чистых помещений и включают в себя:

- сокращение до разумного минимума площадей чистых помещений и других помещений с кондиционированием воздуха;

- исключение задания необоснованно высоких классов чистоты;

- обоснование кратностей воздухообмена, избегая чрезмерно высоких значений, в том числе из-за неоправданно жестких требований к времени восстановления;

- использование HEPA- и ULPA-фильтров с пониженным перепадом давления, например мембранных тефлоновых фильтров;

- герметизацию неплотностей в стыках ограждающих конструкций;

- применение местной защиты при задании высокого класса в ограниченной зоне исходя из требований процесса;

- сокращение численности персонала или использование безлюдных технологий (например, использование закрытого оборудования, изоляторов);

- снижение расхода воздуха в нерабочее время;

- определение на этапах аттестации и эксплуатации реальной величины резерва мощности, заложенной проектом;

- строгое соблюдение требований эксплуатации, в том числе к одежде, гигиене персонала, обучению и пр.;

- определение действительно необходимых расходов воздуха при испытаниях и во время эксплуатации и регулирование расходов воздуха до минимальных значений, основываясь на этих данных;

- эксплуатация чистого помещения при сниженных расходах энергии при условии соблюдения требований к классу чистоты;

- подтверждение возможности работы при сниженных расходах энергии путем текущего контроля чистоты (мониторинга) и повторных аттестаций;

- другие меры согласно 4.4.2.

4.4 Этапы экономии энергии

4.4.1 Общие положения

Оценка потребности в энергоресурсах выполняется на этапах проектирования, аттестации и эксплуатации.

Основным фактором, определяющим потребность в энергоресурсах, является расход воздуха (кратность воздухообмена).

Расход воздуха должен быть определен на этапе проектирования. При этом предусматривается некоторый резерв с учетом неопределенности из-за отсутствия точных данных о выделении частиц оборудованием, процессом и по другим причинам.

На этапе аттестации проверяется правильность проектных решений и определяется реальный резерв систем вентиляции и кондиционирования по расходу воздуха.

При эксплуатации контролируют соответствие чистого помещения заданному классу чистоты.

Примечание - Данный подход отличается от существующей практики. Традиционно расход воздуха определяется на этапе проектирования (в проекте), в построенном помещении при аттестации проверяют соответствие расхода воздуха заданному в проекте и этот расход воздуха поддерживается при эксплуатации. При этом проектом закладывается избыточность расхода воздуха ввиду наличия некоторой неопределенности, но эта избыточность не выявляется при испытаниях. Далее помещение эксплуатируется при излишне высоких кратностях воздухообмена, что приводит к перерасходу энергии.

Настоящий стандарт предусматривает определение реального резерва в проектных решениях и эксплуатацию чистого помещениях при реально необходимых расходах воздуха, которые оказываются менее проектных значений на величину установленного при испытаниях резерва.

В настоящем стандарте приведен гибкий порядок определения кратностей воздухообмена.

4.4.2 Проектирование

Следует принимать общие и специальные меры экономии энергии (см. 4.2-4.3) с учетом реальных возможностей.

Наряду с этим следует предусмотреть:

- регулирование расходов воздуха средствами автоматизации, включая задание режимов для рабочего и нерабочего времени и обеспечение параметров микроклимата в зависимости от конкретных условий;

- переход от обеспечения класса чистоты во всем помещении к местной защите, при которой задается и контролируется класс чистоты только в рабочей зоне, либо в рабочей зоне предусматривается более высокий класс чистоты, чем в остальной части помещения;

- учет работы ламинарных шкафов и ламинарных зон. В этом случае к расходу воздуха на обеспечение чистоты от кондиционера добавляется расход воздуха от ламинарного шкафа (зоны);

- для помещений, где требуется только местная защита, следует рассмотреть целесообразность применения горизонтального потока воздуха вместо вертикального. В отдельных случаях возможно создание потока воздуха под углом, например под углом 45° по отношению к потолку;

- снижение сопротивления потоку воздуха на всех элементах тракта движения воздуха, в том числе за счет низкой скорости воздуха в воздуховоде.

Методы экономии энергии различаются для помещений (зон) с однонаправленным и неоднонаправленным потоком.

4.4.2.1 Однонаправленный поток воздуха

Для зон с однонаправленным потоком ключевым фактором является скорость потока воздуха. Рекомендуется поддерживать скорость однонаправленного потока примерно 0,3 м/с, если нормативными документами не предусмотрено иное. В случае противоречия предусматривается значение скорости, установленное нормативными документами. Например, ГОСТ Р 52249 (приложение 1) предусматривает скорость однонаправленного потока воздуха в пределах 0,36-0,54 м/с; ГОСТ Р 52539 - 0,24-0,3 м/с (в операционных и палатах интенсивной терапии).

4.4.2.2 Неоднонаправленный поток воздуха

Для чистых помещений с неоднонаправленным (турбулентным) потоком решающим фактором является кратность воздухообмена (см. раздел 5).

4.4.3 Аттестация

Аттестация (испытания) чистых помещений проводится по ГОСТ Р ИСО 14644-3 и ГОСТ Р ИСО 14644-4.

В дополнение к этому следует проверить возможность поддержания класса чистоты с запасом при сниженных кратностях и реальных значениях выделения частиц, т.е. определить резерв систем вентиляции и кондиционирования. Это выполняют для оснащенного и эксплуатируемого состояний чистого помещения.

4.4.4 Эксплуатация

Следует подтвердить возможность работы со сниженными кратностями воздухообмена в реальном режиме при выполнении технологического процесса с установленной численностью персонала, использовании данной одежды и пр.

С этой целью предусматривается периодический и/или непрерывный контроль концентрации частиц.

Следует принять меры по снижению выделения частиц всеми возможными источниками, поступлению частиц в помещение и эффективному удалению частиц из помещения, в том числе от персонала, процессов и оборудования, конструкций чистого помещения (удобство и эффективность очистки).

Основными мерами снижения выделения частиц являются:

1) персонал:

- использование соответствующей технологической одежды;

- соблюдение требований гигиены;

- правильное поведение исходя из требований технологии чистоты;

- обучение;

- применение липких ковриков при входе в чистые помещения;

2) процессы и оборудование:

- очистка (мойка, уборка);

- использование местных отсосов (удаление загрязнений с места их выделения);

- применение материалов и конструкций, не адсорбирующих загрязнения и обеспечивающих эффективность и удобство проведения уборки;

3) уборка:

- правильная технология и необходимая периодичность уборки;

- применение инвентаря и материалов, не выделяющих частиц;

- контроль за проведением уборки.

5 Кратность воздухообмена

5.1 Задание кратности воздухообмена

Принимая во внимание ключевую роль расхода воздуха в потреблении энергии, следует выполнять оценку кратностей воздухообмена по всем влияющим на них факторам:

a) потребности в наружном воздухе по санитарным нормам;

b) компенсации местных вытяжек (отсосов);

c) поддержания перепада давления;

d) удаления избытков теплоты;

e) обеспечения заданного класса чистоты.

Следует принять меры по снижению расходов воздуха, не связанных с обеспечением чистоты [перечисления a)-d)] до значений меньших, чем необходимо для обеспечения чистоты [перечисление e)].

Для расчета системы вентиляции и кондиционирования принимается кратность по наихудшему (наибольшему) значению.

Необходимая кратность воздухообмена (расход воздуха) зависит от требований к классу чистоты (предельно допустимой концентрацией частиц в воздухе) и времени восстановления.

Методика расчета кратности воздухообмена для обеспечения чистоты приведена в приложении A.

5.2 Обеспечение класса чистоты

Классификация чистых помещений приведена в ГОСТ ИСО 14644-1.

Требования к классам чистоты задаются в соответствии с нормативными документами (для производства лекарственных средств - по ГОСТ Р 52249, лечебных учреждений - по ГОСТ Р 52539) либо заданием на проектирование (техническим заданием на разработку) чистого помещения, исходя из специфики технологического процесса и по соглашению между заказчиком и исполнителем.

На этапе проектирования интенсивность выделения частиц может быть оценена лишь приближенно, в связи с этим следует предусматривать запас кратности воздухообмена.

5.3 Время восстановления

Время восстановления принимается в соответствии с нормативными требованиями для предусмотренных в них случаев. Например, ГОСТ Р 52249 устанавливает время восстановления 15-20 мин для производств стерильных лекарственных средств. В остальных случаях заказчик и исполнитель могут задавать иные значения времени восстановления (30, 40, 60 мин и др.), исходя из конкретных условий.

Методика расчета снижения концентрации частиц и времени восстановления приведена в приложении A.

На концентрацию частиц в воздухе и время восстановления сильное влияние оказывают одежда персонала и другие условия эксплуатации (см. пример в приложении B).

При наличии в помещении зоны с однонаправленным потоком воздуха следует учитывать ее влияние на чистоту воздуха (см. приложение A).

Приложение A
(справочное)


Зависимость концентрации частиц и времени восстановления от кратности воздухообмена

Основным источником загрязнений в чистом помещении является человек. Во многих случаях эмиссия загрязнений от оборудования и конструкций мала по сравнению с выделениями от человека, и ею можно пренебречь.

Концентрация частиц C в воздухе помещений с приточной вентиляцией в момент времени t рассчитывается (в общем случае) по формуле

, (A.1)

где - концентрация частиц в начальный момент (при включении системы вентиляции или после внесения загрязнений в воздух) t=0, частиц/м;

- интенсивность выделения частиц внутри помещения, частиц/с;

V - объем помещения, м;

- коэффициент, рассчитываемый по формуле (A.2);

- коэффициент, рассчитываемый по формуле (A.3).

, (А.2)

где - коэффициент эффективности системы вентиляции, для чистых помещений с неоднонаправленным (турбулентным) потоком принимается =0,7;

Q - расход приточного воздуха, м/с;

q - объем воздуха, проникающего внутрь помещения из-за негерметичности (инфильтрация воздуха), м/с;

- доля рециркуляционного воздуха;

- эффективность фильтрации рециркуляционного воздуха.

, (A.3)

где - эффективность фильтрации наружного воздуха;

- концентрация частиц в наружном воздухе, частиц/м;

- концентрация частиц в воздухе, поступающем за счет инфильтрации, частиц/м.

Формула (A.1) включает в себя два слагаемых: переменное и постоянное .

, (A.4)

где ,

.

Переменная часть характеризует переходный процесс, когда концентрация частиц в воздухе помещения снижается после включения вентиляции или внесения загрязнений в помещение.

Постоянная часть характеризует установившийся процесс, при котором система вентиляции удаляет частицы, генерируемые в помещении (персоналом, оборудованием и пр.) и поступающие в помещение извне (с приточным воздухом, за счет инфильтрации).

В практических расчетах принимают:

- инфильтрацию воздуха равной нулю, q=0;

- эффективность фильтрации равной 100%, т.е. =0 и =0.

Тогда коэффициенты равны

,

=0.

Формула (A.1) упрощается

, (A.5)

где N - кратность воздухообмена, ч;

Q = N·V. (А.6)

Пример A.1 - Чистое помещение в оснащенном состоянии (без персонала, процесс не ведется).

Рассмотрим чистое помещение со следующими параметрами:

- объем V =100 м;

- класс чистоты 7 ИСО; оснащенное состояние; заданный размер частиц 0,5 мкм (352000 частиц/м);

- интенсивность выделения частиц с размерами 0,5 мкм внутри помещения =10 частиц/с;

- частиц/м, частицы с размерами 0,5 мкм;

- кратность воздухообмена N, соответствует ряду 5, 10, 15, 20, 30;

- расход воздуха Q, м/с, рассчитываемый по формуле (A.6)

,


где 3600 - число секунд в 1 часе;

- коэффициент эффективности системы вентиляции для чистых помещений с неоднонаправленным (турбулентным) потоком принимается =0,7.

Расчет снижения концентрации частиц по истечении времени t выполняем по формуле (A.5):


где .

Примечание - При расчетах следует выражать время в секундах.

Данные расчета приведены в таблице A.1.


Таблица A.1 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени в оснащенном состоянии

Данные таблицы A.1 в графическом виде даны на рисунке A.1.

Из таблицы А.1 и рисунка А.1 видно, что условие времени восстановления менее 15-20 мин (снижения концентрации частиц в воздухе в 100 раз) выполняется для кратностей воздухообмена 15, 20 и 30 ч. Если допустить время восстановления равным 40 мин, то кратность воздухообмена можно снизить до 10 ч. В эксплуатации это означает переключение систем вентиляции на рабочий режим за 40 мин до начала работы.


Рисунок А.1 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени в оснащенном состоянии

Пример А.2 - Чистое помещение в эксплуатации.

Чистое помещение то же, что в примере A.1.

Условия:

- эксплуатируемое состояние;

- численность персонала 4 человека;

- интенсивность выделения частиц с размерами
0,5 мкм одним человеком равна частиц/с (используется одежда для чистых помещений);

- интенсивность выделения частиц с размерами
0,5 мкм частиц/с (используется одежда для чистых помещений);

- выделение частиц оборудованием практически отсутствует, т.е. учитывается только выделение частиц персоналом;

- частиц/с;

- частиц/м.

Рассчитаем снижение концентрации частиц с течением времени по формулам

,


Результаты расчета указаны в таблице A.2.


Таблица A.2 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени (используется одежда для чистых помещений)

Данные таблицы A.2 показаны в графическом виде на рисунке A.2.


Рисунок А.2 - Изменение концентрации частиц с размерами 0,5 мкм в воздухе в зависимости от кратности воздухообмена с течением времени (используется одежда для чистых помещений)

Как видно из примера A.2, при кратности воздухообмена 10 ч класс 7 ИСО достигается через 35 мин после начала работы системы вентиляции (если нет других источников загрязнения). Надежное поддержание класса чистоты 7 ИСО обеспечивается с запасом при кратности воздухообмена 15-20 ч.

Приложение B
(справочное)


Оценка влияния одежды на уровень загрязнений

Рассмотрим влияние одежды на концентрацию частиц в воздухе для случаев:

- обычная одежда для чистых помещений - куртка/брюки, интенсивность выделения частиц 10 частиц/с;

- высокоэффективная одежда - комбинезон для чистых помещений, интенсивность выделения частиц 10 частиц/с.

Данные в таблице B.1 получены по методике, приведенной в приложении А.

Таблица B.1 - Концентрации частиц с размерами 0,5 мкм в воздухе для различных видов одежды для чистых помещений при кратности воздухообмена 10 ч

Примечание - Предполагается, что персонал соблюдает требования гигиены, поведения, переодевания и другие условия эксплуатации чистых помещений по ГОСТ Р ИСО 14644-5.

Данные таблицы B.1 показаны в графическом виде на рисунке B.1.


Рисунок В.1 - Концентрации частиц с размерами 0,5 мкм в воздухе для различных видов одежды при кратности воздухообмена 10 ч

Из таблицы B.1 и рисунка B.1 видно, что применение высокоэффективной одежды позволяет достигать уровня чистоты класса 7 ИСО при кратности воздухообмена 10 ч и времени восстановления 40 мин (если нет других источников загрязнений).

Библиография

[1]

BS 8568:2013

Cleanroom energy - Code of practice for improving energy in cleanrooms and clean air devices

[2]

VDI 2083 Part 4.2

Cleanroom technology - Energy efficiency, Beuth Verlag, Berlin (April 2011)

УДК 543.275.083:628.511:006.354

ОКС 13.040.01

19.020

Ключевые слова: чистые помещения, энергосбережение, вентиляция, кондиционирование воздуха, расход воздуха, кратность воздухообмена

Электронный текст документа
и сверен по:

, 2019

Превью ГОСТ Р 56190-2014 Чистые помещения. Методы энергосбережения